
Projecting Markov Random Field Parameters for

Fast Mixing

Xianghang Liu
NICTA, The University of New South Wales
xianghang.liu@nicta.com.au

Justin Domke
NICTA, The Australian National University

justin.domke@nicta.com.au

Abstract

Markov chain Monte Carlo (MCMC) algorithms are simple and extremely power-
ful techniques to sample from almost arbitrary distributions. The flaw in practice
is that it can take a large and/or unknown amount of time to converge to the station-
ary distribution. This paper gives sufficient conditions to guarantee that univariate
Gibbs sampling on Markov Random Fields (MRFs) will be fast mixing, in a pre-
cise sense. Further, an algorithm is given to project onto this set of fast-mixing
parameters in the Euclidean norm. Following recent work, we give an example use
of this to project in various divergence measures, comparing univariate marginals
obtained by sampling after projection to common variational methods and Gibbs
sampling on the original parameters.

1 Introduction

Exact inference in Markov Random Fields (MRFs) is generally intractable, motivating approximate
algorithms. There are two main classes of approximate inference algorithms: variational methods
and Markov chain Monte Carlo (MCMC) algorithms [13].

Among variational methods, mean-field approximations [9] are based on a “tractable” family of
distributions, such as the fully-factorized distributions. Inference finds a distribution in the tractable
set to minimize the KL-divergence from the true distribution. Other methods, such as loopy belief
propagation (LBP), generalized belief propagation [14] and expectation propagation [10] use a less
restricted family of target distributions, but approximate the KL-divergence. Variational methods
are typically fast, and often produce high-quality approximations. However, when the variational
approximations are poor, estimates can be correspondingly worse.

MCMC strategies, such as Gibbs sampling, simulate a Markov chain whose stationary distribution is
the target distribution. Inference queries are then answered by the samples drawn from the Markov
chain. In principle, MCMC will be arbitrarily accurate if run long enough. The principal difficulty
is that the time for the Markov chain to converge to its stationary distribution, or the “mixing time”,
can be exponential in the number of variables.

This paper is inspired by a recent hybrid approach for Ising models [3]. This approach minimizes
the divergence from the true distribution to one in a tractable family. However, the tractable family
is a “fast mixing” family where Gibbs sampling is guaranteed to quickly converge to the stationary
distribution. They observe that an Ising model will be fast mixing if the spectral norm of a matrix
containing the absolute values of all interactions strengths is controlled. An algorithm projects
onto this fast mixing parameter set in the Euclidean norm, and projected gradient descent (PGD)
can minimize various divergence measures. This often leads to inference results that are better
than either simple variational methods or univariate Gibbs sampling (with a limited time budget).
However, this approach is limited to Ising models, and scales poorly in the size of the model, due to
the difficulty of projecting onto the spectral norm.
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The principal contributions of this paper are, first, a set of sufficient conditions to guarantee that
univariate Gibbs sampling on an MRF will be fast-mixing (Section 4), and an algorithm to project
onto this set in the Euclidean norm (Section 5). A secondary contribution of this paper is considering
an alternative matrix norm (the induced∞-norm) that is somewhat looser than the spectral norm,
but more computationally efficient. Following previous work [3], these ideas are experimentally
validated via a projected gradient descent algorithm to minimize other divergences, and looking at
the accuracy of the resulting marginals. The ability to project onto a fast-mixing parameter set may
also be of independent interest. For example, it might be used during maximum likelihood learning
to ensure that the gradients estimated through sampling are more accurate.

2 Notation

We consider discrete pairwise MRFs with n variables, where the i-th variable takes values in
{1, ..., Li}, E is the set of edges, and θ are the potentials on each edge. Each edge in E is an ordered
pair (i, j) with i ≤ j. The parameters are a set of matrices θ := {θij |θij ∈ RLi×Lj , ∀(i, j) ∈ E}.
When i > j, and (j, i) ∈ E , we let θij denote the transpose of θji. The corresponding distribution is

p(x; θ) = exp





∑

(i,j)∈E

θij(xi, xj)−A(θ)



 , (1)

where A(θ) := log
∑

x exp
(

∑

(i,j)∈E θ
ij(xi, xj)

)

is the log-partition function, and θij(xi, xj)

denotes the entry in the xi-th row and xj-th column of θij . It is easy to show that any parametrization
of a pairwise MRF can be converted into this form. “Self-edges” (i, i) can be included in E if one
wishes to explicitly represent univariate terms.

It is sometimes convenient to work with the exponential family representation

p(x; θ) = exp{f(x) · θ −A(θ)}, (2)

where f(x) is the sufficient statistics for configuration x. If these are indicator functions for all
configurations of all pairs in E , then the two representations are equivalent.

3 Background Theory on Rapid Mixing

This section reviews background on mixing times that will be used later in the paper.

Definition 1. Given two finite distributions p and q, the total variation distance ‖ · ‖TV is defined
as ‖p(X)− q(X)‖TV = 1

2

∑

x |p(X = x)− q(X = x)|.

Next, one must define a measure of how fast a Markov chain converges to the stationary distribution.
Let the state of the Markov chain after t iterations be Xt. Given a constant ǫ, this is done by finding
some number of iterations τ(ǫ) such that the induced distribution p(Xt|X0 = x) will always have a
distance of less than ǫ from the stationary distribution, irrespective of the starting state x.

Definition 2. Let {Xt} be the sequence of random variables corresponding to running Gibbs sam-
pling on a distribution p. The mixing time τ(ǫ) is defined as τ(ǫ) = min{t : d(t) < ǫ}, where
d(t) = maxx ‖P(X

t|X0 = x)− p(X)‖TV is the maximum distance at time t when considering all
possible starting states x.

Now, we are interested in when Gibbs sampling on a distribution p can be shown to have a fast
mixing time. The central property we use is the dependency of one variable on another, defined
informally as how much the conditional distribution over Xi can be changed when all variables
other than Xj are the same.

Definition 3. Given a distribution p, the dependency matrix R is defined by

Rij = max
x,x′:x−j=x′

−j

‖p(Xi|x−i)− p(Xi|x
′
−i)‖TV .

Here, the constraint x−j = x′−j indicates that all variables in x and x′ are identical except xj . The
central result on rapid mixing is given by the following Theorem, due to Dyer et al. [5], generalizing
the work of Hayes [7]. Informally, it states that if ‖R‖ < 1 for any sub-multiplicative norm ‖ · ‖,
then mixing will take on the order of n lnn iterations, where n is the number of variables.

2



Theorem 4. [5, Lemma 17] If ‖ · ‖ is any sub-multiplicative matrix norm and ||R|| < 1, the mixing
time of univariate Gibbs sampling on a system with n variables with random updates is bounded by

τ(ǫ) ≤ n
1−‖R‖ ln

(

‖1n‖ ‖1Tn ‖
ǫ

)

.

Here, ‖1n‖ denotes the same matrix norm applied to a matrix of ones of size n × 1, and similarly
for 1Tn . In particular, if ‖ · ‖ induced by a vector p-norm, then ‖1n‖ ‖1

T
n‖ = n.

Since this result is true for a variety of norms, it is natural to ask, for a given matrix R, which norm
will give the strongest result. It can be shown that for symmetric matrices (such as the dependency
matrix), the spectral norm ‖ · ‖2 is always superior.

Theorem 5. [5, Lemma 13] If A is a symmetric matrix and ‖ · ‖ is any sub-multiplicative norm,
then ‖A‖2 ≤ ‖A‖.

Unfortunately, as will be discussed below, the spectral norm can be more computationally expensive
than other norms. As such, we will also consider the use of the ∞-norm ‖ · ‖∞. This leads to
additional looseness in the bound in general, but is limited in some cases. In particular if R = rG
whereG is the adjacency matrix for some regular graph with degree d, then for all induced p-norms,
‖R‖ = rd, since ‖R‖ = maxx 6=0 ‖Rx‖/‖x| = rmaxx 6=0 ‖Gx‖/‖x‖ = r‖Go‖/‖o‖ = rd, where
o is a vector of ones. Thus, the extra looseness from using, say, ‖ · ‖∞ instead of ‖ · ‖2 will tend to
be minimal when the graph is close to regular, and the dependency is close to a constant value. For
irregular graphs with highly variable dependency, the looseness can be much larger.

4 Dependency for Markov Random Fields

In order to establish that Gibbs sampling on a given MRF will be fast mixing, it is necessary to
compute (a bound on) the dependency matrix R, as done in the following result. The proof of this
result is fairly long, and so it is postponed to the Appendix. Note that it follows from several bounds
on the dependency that are tighter, but less computationally convenient.

Theorem 6. The dependency matrix for a pairwise Markov random field is bounded by

Rij(θ) ≤ max
a,b

1

2
‖θij·a − θ

ij
·b‖∞.

Here, θij·a indicates the a−th column of θij . Note that the MRF can include univariate terms as self-
edges with no impact on the dependency bound, regardless of the strength of the univariate terms. It
can be seen easily that from the definition of R (Definition 3), for any i the entry Rii for self-edges
(i, i) should always be zero. One can, without loss of generality, set each column of θii to be the
same, meaning that Rii = 0 in the above bound.

5 Euclidean Projection Operator

The Euclidean distance between two MRFs parameterized respectively by ψ and θ is ‖θ − ψ‖2 :=
∑

(i,j)∈E ‖θ
ij − ψij‖2F . This section considers projecting a given vector ψ onto the fast mixing set

or, formally, finding a vector θ with minimum Euclidean distance to ψ, subject to the constraint
that a norm ‖ · ‖∗ applied to the bound on the dependency matrix R is less than some constant c.
Euclidean projection is considered because, first, it is a straightforward measure of the closeness
between two parameters and, second, it is the building block of the projected gradient descent for
projection in other distance measures. To begin with, we do not specify the matrix norm ‖ · ‖∗, as it
could be any sub-multiplicative norm (Section 3).

Thus, in principle, we would like to find θ to solve

projc(ψ) := argmin
θ:‖R(θ)‖∗≤c

‖θ − ψ‖2. (3)

Unfortunately, while convex, this optimization turns out to be somewhat expensive to solve, due to
a lack of smoothness Instead, we introduce a matrix Z , and constrain that Zij ≥ Rij(θ), where
Rij(θ) is the bound on dependency in Thm 6 (as an equality). We add an extra quadratic term
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α‖Z − Y ‖2F to the objective, where Y is an arbitrarily given matrix and α > 0 is trade-off between
the smoothness and the closeness to original problem (3). The smoothed projection operator is

projC(ψ, Y ) := argmin
(θ,Z)∈C

‖θ − ψ‖2 + α‖Z − Y ‖2F , C = {(θ, Z) : Zij ≥ Rij(θ), ‖Z‖∗ ≤ c}. (4)

If α = 0, this yields a solution that is identical to that of Eq. 3. However, when α = 0, the objective
in Eq. 4 is not strongly convex as a function of Z , which results in a dual function which is non-
smooth, meaning it must be solved with a method like subgradient descent, with a slow convergence
rate. In general, of course, the optimal point of Eq. 4 is different to that of Eq. 3. However,
the main usage of the Euclidean projection operator is the projection step in the projected gradient
descent algorithm for divergence minimization. In these tasks the smoothed projection operator can
be directly used in the place of the non-smoothed one without changing the final result. In situations
when the exact Euclidean projection is required, it can be done by initializing Y1 arbitrarily and
repeating (θk+1, Yk+1)← projC(ψ, Yk), for k = 1, 2, . . . until convergence.

5.1 Dual Representation

Theorem 7. Eq. 4 has the dual representation

maximize
σ,φ,∆,Γ

g(σ, φ,∆,Γ)

subject to σij(a, b, c) ≥ 0, φij(a, b, c) ≥ 0, ∀(i, j) ∈ E , a, b, c
, (5)

where

g(σ, φ,∆,Γ) = min
Z
h1(Z;σ, φ,∆,Γ) + min

θ
h2(θ;σ, φ)

h1(Z;σ, φ,∆,Γ) = −tr(ZΛT ) + I(‖Z‖∗ ≤ c) + α‖Z − Y ‖2F

h2(θ;σ, φ) = ‖θ − ψ‖
2 +

1

2

∑

i,j∈E

∑

a,b,c

(

σij(a, b, c)− φij(a, b, c)
)

(θijc,a − θ
ij
c,b),

in which Λij := ∆ijDij + Γ̂ij +
∑

a,b,c σij(a, b, c) + φij(a, b, c), where Γ̂ij :=
{

Γij if (i, j) ∈ E
−Γij if (j, i) ∈ E

, and D is an indicator matrix with Dij = 0 if (i, j) ∈ E or (j, i) ∈ E ,

andDij = 1 otherwise. The dual variables σij and φij are arrays of size Lj ×Li×Li for all pairs
(i, j) ∈ E while ∆ and Γ are of size n× n.

The proof of this is in the Appendix. Here, I(·) is the indicator function with I(x) = 0 when x is
true and I(x) =∞ otherwise.

Being a smooth optimization problem with simple bound constraints, Eq. 5 can be solved with
LBFGS-B [2]. For a gradient-based method like this to be practical, it must be possible to quickly
evaluate g and its gradient. This is complicated by the fact that g is defined in terms of the mini-
mization of h1 with respect to Z and h2 with respect to θ. We discuss how to solve these problems
now. We first consider the minimization of h2. This is a quadratic function of θ and can be solved
analytically via the condition that ∂

∂θ
h2(θ;σ, φ) = 0. The closed form solution is

θijc,a = ψijc,a −
1

4

[

∑

b

σij(a, b, c)−
∑

b

σij(b, a, c)−
∑

b

φij(a, b, c) +
∑

b

φij(b, a, c)

]

∀(i, j) ∈ E , 1 ≤ a, c ≤ m.. The time complexity is linear in the size of ψ.

Minimizing h1 is more involved. We assume to start that there exists an algorithm to quickly project
a matrix onto the set {Z : ‖Z‖∗ ≤ c}, i.e. to solve the optimization problem of

min
‖Z‖∗≤c

‖Z −A‖2F . (6)

Then, we observe that argminZ h1 is equal to

argmin
Z
−tr(ZΛT ) + I(‖Z‖∗ ≤ c) + α‖Z − Y ‖2F = arg min

‖Z‖∗≤c
‖Z − (Y +

1

2α
Λ)‖2F .
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For different norms ‖ · ‖∗, the projection algorithm will be different and can have a large impact on
efficiency. We will discuss in the followings sections the choices of ‖ · ‖∗ and an algorithm for the
∞-norm.

Finally, once h1 and h2 have been solved, the gradient of g is (by Danskin’s theorem [1])

∂g

∂∆ij

=−DijẐij ,
∂g

∂Γij
=Ẑji − Ẑij ,

∂g

∂σij(a, b, c)
=
1

2
(θ̂ijc,a − θ̂

ij
c,b)− Ẑij ,

∂g

∂φij(a, b, c)
=− ∂σij(a,b,c)g,

where Ẑ and θ̂ represent the solutions to the subproblems.

5.2 Spectral Norm

When ‖·‖∗ is set to the spectral norm, i.e. the largest singular value of a matrix, the projection in Eq.
6 can be performed by thresholding the singular values of A [3]. Theoretically, using spectral norm
will give a tighter bound on Z than other norms (Section 3). However, computing a full singular
value decomposition can be impractically slow for a graph with a large number of variables.

5.3 ∞-norm

Here, we consider setting ‖ · ‖∗ to the ∞-norm, ‖A‖∞ = maxi
∑

j |Aij |, which measures the

maximum l1 norm of the rows of A. This norm has several computational advantages. Firstly, to
project a matrix onto a ∞-norm ball {A : ‖A∞‖ ≤ c}, we can simply project each row ai of the
matrix onto the l1-norm ball {a : ‖a‖1 ≤ c}. Duchi et al. [4] provide a method linear in the number
of nonzeros in a and logarithmic in the length of a. Thus, if Z is an n × n, matrix, Eq. 6 for the
∞-norm can be solved in time n2 and, for sufficiently sparse matrices, in time n logn.

A second advantage of the∞-norm is that (unlike the spectral norm) projection in Eq. 6 preserves
the sparsity of the matrix. Thus, one can disregard the matrix D and dual variables ∆ when solving
the optimization in Theorem 7. This means that Z itself can be represented sparsely, i.e. we only
need variables for those (i, j) ∈ E . These simplifications significantly improve the efficiency of
projection, with some tradeoff in accuracy.

6 Projection in Divergences

In this section, we want to find a distribution p(x; θ) in the fast mixing family closest to a target
distribution p(x;ψ) in some divergenceD(ψ, θ). The choice of divergence depends on convenience
of projection, the approximate family and the inference task. We will first present a general algo-
rithmic framework based on projected gradient descent (Algorithm 1), and then discuss the details
of several previously proposed divergences [11, 3].

6.1 General algorithm framework for divergence minimization

The problem of projection in divergences is formulated as

min
θ∈C̄

D(ψ, θ), (7)

D(·, ·) is some divergence measure, and C̄ := {θ : ∃Z, s.t.(θ, Z) ∈ C}, where C is the feasible set
in Eq. 4. Our general strategy for this is to use projected gradient descent to solve the optimization

min
(θ,Z)∈C

D(ψ, θ), (8)

using the joint operator to project onto C described in Section 5.

For different divergences, the only difference in projection algorithm is the evaluation of the gradient
∇θD(ψ, θ). It is clear that if (θ∗, Z∗) is the solution of Eq. 8, then θ∗ is the solution of 7.

6.2 Divergences
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Algorithm 1 Projected gradient descent for divergence projection

Initialize (θ1, Z1), k ← 1.
repeat
θ′ ← θk − λ∇θD(ψ, θk)
(θk+1, Zk+1)← projC(θ

′, Zk)
k ← k + 1

until convergence
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Figure 1: Mean univariate marginal error on 16× 16
grids (top) with attractive interactions and median-
density random graphs (bottom) with mixed interac-
tions, comparing 30k iterations of Gibbs sampling af-
ter projection (onto the l∞ norm) to variational meth-
ods. The original parameters also show a lower curve
with 106 samples.

In this section, we will discuss the differ-
ent choices of divergences and correspond-
ing projection algorithms.

6.2.1 KL-divergence

The KL-divergence KL(ψ‖θ) :=
∑

x p(x;ψ) log
p(x;ψ)
p(x;θ) is arguably the

optimal divergence for marginal inference
because it strives to preserve the marginals
of p(x; θ) and p(x;ψ). However, projection
in KL-divergence is intractable here because
the evaluation of the gradient ∇θKL(ψ‖θ)
requires the marginals of distribution ψ.

6.2.2 Piecewise KL-divergence

One tractable surrogate of KL(ψ‖θ) is
the piecewise KL-divergence [3] de-
fined over some tractable subgraphs.
Here, D(ψ, θ) := maxT∈T KL(ψT ‖θT ),
where T is a set of low-treewidth sub-
graphs. The gradient can be evaluated as
∇θD(ψ, θ) = ∇θKL(ψT∗‖θT∗) where
T ∗ = argmaxT∈T KL(ψT ‖θT ). For any
T in T , KL(ψT ‖θT ) and its gradient can be
evaluated by the junction-tree algorithm.

6.2.3 Reversed KL-divergence

The “reversed” KL-divergence KL(θ‖ψ) is
minimized by mean-field methods. In
general KL(θ‖ψ) is inferior to KL(ψ‖θ)
for marginal inference since it tends to
underestimate the support of the distri-
bution [11]. Still, it often works well
in practice. ∇θKL(θ‖ψ) can computed
as ∇θKL(θ‖ψ) =

∑

x p(x; θ)(θ − ψ) ·
f(x)

(

f(x) − µ(θ)
)

, which can be approxi-

mated by samples generated from p(x; θ) [3]. In implementation, we maintain a “pool” of samples,
each of which is updated by a single Gibbs step after each iteration of Algorithm 1.

7 Experiments

The experiments below take two stages: first, the parameters are projected (in some divergence) and
then we compare the accuracy of sampling with the resulting marginals. We focus on this second
aspect. However, we provide a comparison of the computation time for various projection algorithms
in Table 1, and when comparing the accuracy of sampling with a given amount of time, provide two
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curves for sampling with the original parameters, where one curve has an extra amount of sampling
effort roughly approximating the time to perform projection in the reversed KL divergence.

7.1 Synthetic MRFs
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Figure 2: Examples of the accuracy of obtained
marginals vs. the number of samples. Top:
Grid graphs. Bottom: Median-Density Random
graphs.

Our first experiment follows that of [8, 3]
in evaluating the accuracy of approximation
methods in marginal inference. In the exper-
iments, we approximate randomly generated
MRF models with rapid-mixing distributions
using the projection algorithms described pre-
viously. Then, the marginals of fast mixing
approximate distributions are estimated by run-
ning a Gibbs chain on each distribution. These
are compared against exact marginals as com-
puted by the junction tree algorithm. We use
the mean absolute difference of the marginals
|p(Xi = 1)− q(Xi = 1)| as the accuracy mea-
sure. We compare to Naive mean-field (MF),
Gibbs sampling on original parameters (Gibbs),
and Loopy belief propagation (LBP). Many
other methods have been compared against a
similar benchmark [6, 8].

While our methods are for general MRFs, we
test on Ising potentials because this is a stan-
dard benchmark. Two graph topologies are
used: two-dimensional 16 × 16 grids and 10
node random graphs, where each edge is in-
dependently present with probability pe ∈
{0.3, 0.5, 0.7}. Node parameters θi are uni-
form from [−dn, dn] with fixed field strength
dn = 1.0. Edge parameters θij are uniform
from [−de, de] or [0, de] to obtain mixed or at-
tractive interactions respectively, with interac-
tion strengths de ∈ {0, 0.5, . . . , 4}. Figure 1
shows the average marginal error at different
interaction strengths. Error bars show the stan-
dard error normalized by the number of samples, which can be interpreted as a 68.27% confidence
interval. We also include time-accuracy comparisons in Figure 2. All results are averaged over 50
random trials. We run Gibbs long enough ( 106 samples) to get a fair comparison in terms of running
time.

Except where otherwise stated, parameters are projected onto the ball {θ : ‖R(θ)‖∞ ≤ c}, where
c = 2.5 is larger than the value of c = 1 suggested by the proofs above. Better results are obtained
by using this larger constraint set, presumably because of looseness in the bound. For piecewise
projection, grids use simple vertical and horizontal chains of treewidth either one or two. For random
graphs, we randomly generate spanning trees until all edges are covered. Gradient descent uses a
fixed step size of λ = 0.1. A Gibbs step is one “systematic-scan” pass over all variables between.
The reversed KL divergence maintains a pool of 500 samples, each of which is updated by a single
Gibbs step in each iteration.

We wish to compare the trade-off between computation time and accuracy represented by the choice
between the use of the ∞ and spectral norms. We measure the running time on 16 × 16 grids in
Table 1, and compare the accuracy in Figure 3.

The appendix contains results for a three-state Potts model on an 8×8 grid, as a test of the multivari-
ate setting. Here, the intractable divergenceKL(ψ‖θ) is included for reference, with the projection
computed with the help of the junction tree algorithm for inference.
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Table 1: Running times on 16×16 grids with attractive interactions. Euclidean projection converges
in around 5 LBFGS-B iterations. Piecewise projection (with a treewidth of 1) and reversed KL
projection use 60 gradient descent steps. All results use a single core of a Intel i7 860 processor.

Gibbs Euclidean Piecewise Reversed-KL

30k Steps 10
6 Steps l∞ norm l2 norm l∞ norm l2 norm l∞ norm l2 norm

de = 1.5 0.67s 22.42s 1.50s 25.63s 12.87s 45.26s 13.13s 66.81s
de = 3.0 0.67s 22.42s 3.26s 164.34s 20.73s 211.08s 20.12s 254.25s

7.2 Berkeley binary image denoising
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Figure 3: The marginal error using∞-norm pro-
jection (solid lines) and spectral-norm projection
(dotted lines) on 16x16 Ising grids.

This experiment evaluates various methods
for denoising binary images from the Berke-
ley segmentation dataset downscaled from
300 × 200 to 120 × 80. The images are
binarized by setting Yi = 1 if pixel i is above
the average gray scale in the image, and
Yi = −1. The noisy image X is created by

setting: Xi = Yi+1
2 i

(1 − t1.25i ) + 1−Yi

2 t1.25i ,

in which ti is sampled uniformly from [0, 1].
For inference purposes, the conditional
distribution Y is modeled as P (Y |X) ∝

exp
(

β
∑

ij YiYj +
α
2

∑

i(2Xi − 1)Yi

)

,

where the pairwise strength β > 0 encourages
smoothness. On this attractive-only Ising
potential, the Swendsen-Wang method [12]

mixes rapidly, and so we use the resulting
samples to estimate the ground truth. The
parameters α and β are heuristically chosen to
be 0.5 and 0.7 respectively.
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Figure 4: Average marginal error on the Berkeley
segmentation dataset.

Figure 4 shows the decrease of average
marginal error. To compare running time, Eu-
clidean and K(θ‖ψ) projection cost approxi-
mately the same as sampling 105 and 4.8× 105

samples respectively. Gibbs sampling on the
original parameter converges very slowly. Sam-
pling the approximate distributions from our
projection algorithms converge quickly in less
than 104 samples.

8 Conclusions

We derived sufficient conditions on the parame-
ters of an MRF to ensure fast-mixing of univari-
ate Gibbs sampling, along with an algorithm to
project onto this set in the Euclidean norm. As
an example use, we explored the accuracy of
samples obtained by projecting parameters and
then sampling, which is competitive with simple variational methods as well as traditional Gibbs
sampling. Other possible applications of fast-mixing parameter sets include constraining parame-
ters during learning.
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9 Appendix

9.1 Proof of MRF Dependency Bound

This section gives a proof of the bound on the dependency matrix stated in Section 4 above.

To start with, we observe the conditional distribution of a single variable xi when all others are fixed,
which is easy to calculate.

Lemma 8. The conditional probability of one variable given all others is

p(Xi = ·|X−i = x−i) = sig





∑

k∈N(i)

θik·xk



 ,

where sig is the “multivariate sigmoid” defined as (v) = exp(v)/1T exp(v), and N(i) is the set of
indices that are in a pair with i.

Now, to compute the influence matrix, we must consider what configuration of all the variables other
than xi and xj will allow a change in xj to induce the greatest change in xi (Definition 3).

Lemma 9. The dependency matrix is given by

Rij = max
x,y:x−j=y−j

1

2
‖sig(θij·xj

+ s)− sig(θij·yj + s)‖1

s =
∑

k∈N(i)\j

θik·xk

Proof. Using the previous Lemma inside the definition of the dependency matrix (Definition 3)
gives that

Rij = max
x,y:x−j=y−j

‖p(Xi = ·|x−i)− p(Xi = ·|y−i)‖TV

= max
x,y:x−j=y−j

1

2
‖sig(

∑

k∈N(i)

θik·xk
)− sig(

∑

k∈N(i)

θik·yk)‖1.

Substituting the definition of s inside each of the sig() terms gives the result.

While the previous Lemma bounds the dependency, it is not in a very convenient form. Hence, the
rest of this section will apply a series of relaxations to obtain more convenient upper-bounds. The
first of these is obtained by letting s be an arbitrary vector, rather than determined by θ and x.

Lemma 10. The dependency matrix for an MRF is bounded by

Rij ≤ max
xj ,yj

max
s

1

2
‖sig(θij·xj

+ s)− sig(θij·yj + s)‖1.

The following Lemma will be needed in what follows.

Lemma 11. For vectors x, y, s,

max
s
‖sig(x + s)− sig(y + s)‖1 = 2|2a− 1|,

where a = σ
(

1
2 range(y − x)

)

. Here, range(z) is defined as maxi zi −min zi.

Now, applying this Lemma to the previous result on the dependency matrix gives the following
Theorem.

Theorem 12. The dependency matrix for an MRF is bounded by

Rij ≤
1

4
max
a,b
|range(θij·a − θ

ij
·b )|.

10



Proof. The previous result gives us the bound

Rij ≤ max
a,b
|2σ(

1

2
range(θij·a − θ

ij
·b )− 1|.

Using the easily-proven fact that |2σ(12x) − 1| ≤ 1
4 |x| gives the result.

Corollary 13. The dependency matrix for an MRF is bounded by

Rij ≤ max
a,b

1

4
‖θij·a − θ

ij
·b‖1, Rij ≤ max

a,b

1

2
‖θij·a − θ

ij
·b‖∞.

Proof. This follows immediately from the observations that |range(x)| ≤ ‖x‖1 and that
|range(x)| ≤ 2‖x‖∞.

9.2 Proof of Dual Representation for Euclidean Projection Operator

This section gives a proof of the main result of Section 5.1, as stated below.

Theorem 14. The projection operator

projC(ψ, Y ) := argmin
(θ,Z)∈C

‖θ − ψ‖2 + α‖Z − Y ‖2F , C = {(θ, Z) : Zij ≥ Rij(θ), ‖Z‖∗ ≤ c} (9)

has the dual representation of

maximize
σ,φ,∆,Γ

g(σ, φ,∆,Γ)

subject to σij(a, b, c) ≥ 0, φij(a, b, c) ≥ 0, ∀(i, j) ∈ E , a, b, c
, (10)

where

g(σ, φ,∆,Γ) = min
Z
h1(Z;σ, φ,∆,Γ) + min

θ
h2(θ;σ, φ)

h1(Z;σ, φ,∆,Γ) = −tr(ZΛT ) + I(‖Z‖∗ ≤ c) + α‖Z − Y ‖2F

h2(θ;σ, φ) = ‖θ − ψ‖
2 +

1

2

∑

i,j∈E

∑

a,b,c

(

σij(a, b, c)− φij(a, b, c)
)

(θijc,a − θ
ij
c,b),

in which Λij := ∆ijDij + Γ̂ij +
∑

a,b,c σij(a, b, c) + φij(a, b, c), where Γ̂ij :=
{

Γij if (i, j) ∈ E
−Γij if (j, i) ∈ E

, and D is an indicator matrix with Dij = 0 if (i, j) ∈ E or (j, i) ∈ E ,

andDij = 1 otherwise. The dual variables σij and φij are arrays of size Lj ×Li×Li for all pairs
(i, j) ∈ E while ∆ and Γ are of size n× n.

Proof. Firstly, we observe that the minimization in Eq. 9 is equivalent to

minimize
θ,Z

‖θ − ψ‖2 + α‖Z − Y ‖2F

subject to ‖Z‖∗ ≤ c

Zij = Zji, ∀(i, j) ∈ E

Zij ≥ max
1≤a,b≤m

1

2
‖θij.a − θ

ij
.b‖∞, ∀(i, j) ∈ E

DijZij = 0, 1 ≤ i, j ≤ n.

(11)
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Now, consider the Lagrangian of this problem,

L(θ, Z, σ, φ,∆,Γ) := ‖θ − ψ‖2 + α‖Z − Y ‖2F + I(‖Z‖∗ ≤ c)

−
∑

(i,j)∈E

∑

a,b,c

σij(a, b, c)
(

Zij −
1

2
(θijc,a − θ

ij
c,b)

)

−
∑

(i,j)∈E

∑

a,b,c

φij(a, b, c)
(

Zij +
1

2
(θijc,a − θ

ij
c,b)

)

−
∑

i,j

∆ijDijZij −
∑

(i,j)∈E

Γij(Zij − Zji).

Here, Γ, ∆, σij and φij , 1 ≤ i, j ≤ n are dual variables and
∑

i,j denotes
∑

1≤i,j≤n for simplicity

of notation. Here, note that L is independent of Γij , σij and φij for (i, j) 6∈ E . For convenience, one
can simply set these to zero.

It is straightforward to verify that the problem in Eq. 11 is convex and Slater’s conditions hold.
Thus, by strong duality we have the the solution of Eq. 11 is equal to

min
θ,Z

max
σ≥0,φ≥0,∆,Γ

L(θ, Z, σ, φ,∆,Γ) = max
σ≥0,φ≥0,∆,Γ

g(σ, φ,∆,Γ),

where we define the dual function

g(σ, φ,∆,Γ) = min
θ,Z

L(θ, Z, σ, φ,∆,Γ).

Finally, by a simple manipulation of terms, we can see that

g(σ, φ,∆,Γ) = min
Z
h1(Z;σ, φ,∆,Γ) + min

θ
h2(θ;σ, φ)

h1(Z;σ, φ,∆,Γ) = −tr(ZΛT ) + I(||Z||∗ ≤ c) + α||Z − Y ||2F

h2(θ;σ, φ) = ‖θ − ψ‖
2 +

1

2

∑

i,j∈E

∑

a,b,c

(

σij(a, b, c)− φij(a, b, c)
)

(θijc,a − θ
ij
c,b).

9.3 Additional Experimental Results

The rest of the appendix contains extra experimental results that could not fit in the main paper.
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Figure 5: Marginal error vs. interaction strength for 3-state Potts models on grids. Here, the
intractable divergence KL(ψ‖θ) is included for reference. With attractive interactions, the best-
performing tractable algorithm uses the piecewise divergence, while with mixed interactions, loopy
BP and simply sampling using the original parameters both perform extremely well.
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Figure 6: Marginal error vs. interaction strength for Ising models on grids
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Figure 7: Marginal error v.s. interaction strength for Ising models on random graphs
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Figure 8: Marginal error v.s. number of samples for Ising models on grids
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Figure 9: Marginal error v.s. number of samples for Ising models on random graphs with edge
density 0.3
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Figure 10: Marginal error v.s. number of samples for Ising models on random graphs with edge
density 0.5
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Figure 11: Marginal error v.s. number of samples for Ising models on random graphs with edge
density 0.7
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